Biosynthesis of the Terpenoid Dendrobine. Early Stages of the Pathway

By Attilio Corbella, Pierluigi Gariboldi, Giancarlo Jommi,* and Massimo Sisti

(Laboratorio di Chimica Organica della Facoltà di Scienze, Università di Milano, Via Saldini, 50, Milano, Italy)

Summary 2-trans, 6-trans-farnesol is shown to be a precursor in the biosynthesis of dendrobine rather than the 2-cis, 6-trans-isomer; the 1-pro-R hydrogen of farnesol is involved in a 1,3-shift in the early stages of the pathway.

A COMMENT¹ on our work on the biosynthesis of dendrobine² prompts us to present further results.[†]

 $[1-{}^{3}H_{2}]$ -2-trans, 6-trans-farnesol (10 mCi) was fed to living plants of *Dendrobium nobile* as a water suspension with Tween 80 as emulsifier. After 15 days the plants were extracted as usual and the resulting dendrobine (1) showed an incorporation of tritium of 0.01% (12.8 × 10⁵ d.p.m. mmol⁻¹). Chemical degradation to the already described² diphenylolefin (2) (6.14 × 10⁵ d.p.m. mmol⁻¹) and

† Some of these results were discussed at the EUCHEM Conference on the Chemistry and Biosynthesis of Steroids and Terpenoids, La Laguna, Canary Isles, Spain, September 1974.

the tetrahydrofuran derivative (3) (6.8×10^6 d.p.m. mmol⁻¹) localized 52% of the label at C(5) and 47% at C(8). Feeding of [1-3H2]-2-cis, 6-trans-farnesol resulted in a negligible incorporation of radioactivity into dendrobine.

(1S)-[1-3H]-2-trans, 6-trans-farnesol (5 mCi) was also given to D. nobile and the extracted dendrobine showed an incorporation of tritium of the same magnitude as the racemic

precursor (0.015% and 0.020% in two parallel experiments). The transformation of (1) into (2) resulted in the loss of more than 88% of tritium from C(5). Again, feeding (1S)-[1-³H]-2-cis, 6-trans-farnesol resulted in no appreciable labelling of dendrobine.

The experiment with [1-3H2]2-trans, 6-trans-farnesol unambiguously establishes that the hydrogen atom at C(8) of dendrobine originates from C(1) of farnesol; the existence of many muurolanes and cardinanes with both hydrogens at C(9)^t and the need for a reactive centre at C(1) of the germacrene intermediate (4) to accomplish the second cyclization was largely in favour of this proposal^{2,3} which has now been confirmed. The incorporation of $(1S)-[1-^3H]-$ 2-trans, 6-trans-farnesol reveals that this hydride shift has a high degree of stereospecificity, the 1-pro-R hydrogen being transferred.§

These results confirm that in our system farnesal is not mediating trans-cis isomerization of farnesol,⁴ and also substantiate the hypothesis previously presented² about the configuration of double bonds in dendrobine precursors. The lack of incorporation of 2-cis, 6-trans-farnesol into dendrobine suggests that the germacradiene (4) is formed in a trans, trans-configuration and only in the following steps is the configuration or the position of the 2,3-double bond modified to fulfil the geometrical requirements for the ring closure of the muurolane intermediate.5

(Received, 7th February 1975; Com. 141.)

t Numbering in germacranes and muurolanes refers to the corresponding carbon atoms in farnesol, according to the proposed scheme of cyclization.

§ At the 9th IUPAC Symposium on the Chemistry of Natural Products (Ottawa, June 1974), D. Arigoni described feeding experiments in D. nobile with (5R)- and (5S)- $[5-^{3}H]$ mevalonic acid; from these precursors, the 1,3-hydride shift also involves transfer of the 1-pro-R hydrogen.

- ¹ E. McDonald, Ann. Reports (B), 1973, 70, 600. ² A. Corbella, P. Gariboldi, and G. Jommi, J.C.S. Chem. Comm., 1973, 729. ³ A. Corbella, P. Gariboldi, and G. Jommi, J.C.S. Chem. Comm., 1972, 600.
- K. H. Overton and F. M. Roberts, Phytochemistry, 1974, 13, 2741; R. Evans, A. M. Holton, and J. R. Hanson, J.C.S. Chem. Comm., 1973, 465; L. Chayet, R. Pont-Lezica, C. George-Nascimento, and O. Cori, Phytochemistry, 1973, 12, 95.
- ⁵ K. Yoshihara, Y. Ohta, T. Sakui, and Y. Hirose, Tetrahedron Letters, 1969, 2263.